自然語言處理的相關文獻

自然語言

前言

簡介

歷史

理論篇

知識表達

語法理論

語意理論

語用理論

方法篇

規則比對

機率統計

神經網路

應用篇

語料建構

全文檢索

自動分類

自動摘要

機器翻譯

問答系統

中文處理

程式篇

交談程式

英漢翻譯

維基語料

搜尋引擎

相關資源

語料辭典

程式工具

相關網站

相關文獻

網頁列表

統計資訊

最新修改

訊息

相關網站

參考文獻

最新修改

簡體版

English

  1. http://www.leexiang.com/an-introduction-to-inside-outside-algorithm

An introduction to Inside-Outside Algorithm, 发表于 2011-11-18, 本文主要内容翻译自 JHU 的 Note on the Inside-Outside Algorithm。 

教科書

  1. Natural Language Processing with Python
  2. Speech and Language Processing

參考

轉載自 我愛自然語言處理 www.52nlp.cn

3. 1.A Statistical Approach to Machine Translation
  簡稱Brown90,這是統計機器翻譯的奠基之作,是瞭解統計機器翻譯基本思想的必讀,文章中最主要的思想是把機器翻譯看成是一個資訊傳輸的過程,用 一種信源通道模型對機器翻譯進行解釋。另外文章主要是對統計機器翻譯三部分(翻譯模型、語言模型及解碼)的宏觀介紹,涉及的數學理論並沒有過多的詳細解 釋,因此讀來比較輕鬆。
4. 2. The Mathematics of Machine Translation: Parameter Estimation
  簡稱Brown93,主要針對Brown90中翻譯模型的參數估計進行了詳細的數學解釋,需要一定的數學基礎和耐心,不過Kevin Knight 99年JHU(約翰霍普金斯大學)夏季機器翻譯研討班上的《A Statistical MT Tutorial Workbook》對Brown93用例子及通俗的方式進行了講解,讀來比較容易理解,值得對照閱讀。
5. 3. Discriminative Training and Maximum Entropy Models for Statistical Machine Translation
  這是統計機器翻譯領域中傳奇人物Franz Josef Och 在2002年ACL會議上發表的論文,他提出了基於最大熵模型的統計機器翻譯方法,是對Brown信源通道模型的極大擴展,開闊了統計機器翻譯的視野,並 為研究者提供了一個融合其它知識到統計機器翻譯中的研究框架,這篇論文獲得了當年的ACL最佳論文獎。
6. 4. Statistical Phrase-Based Translation
  這是統計機器翻譯領域另一個大牛Philipp Koehn 2002年與Och合著的文章,已涉及了具體的方法而不是理論框架:基於短語的統計機器翻譯。之所以選在這裡,與Koehn 2004年發佈的具有廣泛影響力的解碼器Pharaoh不無關係,Pharoah現在已被Koehn領導的另一個開源專案Moses所取代。
7. 5. BLEU: A Method for Automatic Evaluation of Machine Translation
  這是目前用得最廣的機器翻譯自動評測方法BLEU的原始論文,之所以選在這裡,因為評測方法的好壞對於機器翻譯的研究具有很大的影響,BLEU理應作為評測方法的代表入選。
8.   統計機器翻譯中其實還有好多經典文獻,恕本人學識有限,這裡只將自己能力範圍之內的重要文章放在這裡,歡迎大家探討和補充!這些文章都可以在Google中搜到,所以這裡就不附下載連接了。
(注:原創文章,轉載請注明出處“我愛自然語言處理”:www.52nlp.cn)
9. ^ Google Translate FAQ http://www.google.com/intl/en/help/faq_translation.html
10. ^ NIST 2006 Machine Translation Evaluation Official Results http://www.nist.gov/speech/tests/mt/2006/doc/mt06eval_official_results.html
11. ^ W. Weaver (1955). Translation (1949). In: Machine Translation of Languages, MIT Press, Cambridge, MA.
12. ^ P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer (1993). The mathematics of statistical machine translation: parameter estimation. Computational Linguistics, 19(2), 263-311.
13. ^ S. Vogel, H. Ney and C. Tillmann. 1996. HMM-based Word Alignment in StatisticalTranslation. In COLING ’96: The 16th International Conference on Computational Linguistics, pp. 836-841, Copenhagen, Denmark.
14. ^ Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. D. Lafferty, I. Melamed, D. Purdy, F. Och, N. A. Smith and D. Yarowsky. 1999. Statistical Machine Translation. Final Report JHU Workshop, Available at http://www.clsp.jhu.edu/ws99/projects/mt/final_report/mtfinal-reports.ps
15. ^ F. Och and H. Ney. (2003). A Systematic Comparison of Various Statistical Alignment Models. Computational Linguistics, 29(1):19-51
16. ^ 8.0 8.1 Q. Gao, S. Vogel, "Parallel Implementations of Word Alignment Tool", Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pp. 49-57, June, 2008
17. ^ F. Och, H. Ney. "Discriminative Training and Maximum Entropy Models for Statistical Machine Translation". In "ACL 2002: Proc. of the 40th Annual Meeting of the Association for Computational Linguistics" (best paper award), pp. 295-302, Philadelphia, PA, July 2002.
18. ^ F. Och. "Minimum Error Rate Training for Statistical Machine Translation". In "ACL 2003: Proc. of the 41st Annual Meeting of the Association for Computational Linguistics", Japan, Sapporo, July 2003.
19. ^ K. Papineni, S. Roukos, T. Ward and W. Zhu 2002. BLEU: a Method for Automatic Evaluation of machine translation. Proc. of the 40th Annual Conf. of the Association for Computational Linguistics (ACL 02), pp. 311-318, Philadelphia, PA
20. ^ P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, E. Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. ACL 2007, Demonstration Session, Prague, Czech Republic
21. ^ J. Niehues, 2007. Discriminative Word Alignment Models. Diplomarbeit at Universitat Karlsruhe (TH).
22. ^ Moses Training Tutorial http://www.statmt.org/moses/?n=FactoredTraining.HomePage
23. ^ Q. Gao, 2008 Parallelizing the Training Procedure of Statistical Phrase-based Machine Translation, Student Research Symposium Carnegie Mellon University. http://www.lti.cs.cmu.edu/SRS/2008-abstracts/talks/GaoTalk.pdf
Case Grammer
24. Cook, Walter A., SJ (1989) Case Grammar Theory. Washington, DC: Georgetown University Press.
25. Fillmore, Charles J. (1968) "The Case for Case". In Bach and Harms (Ed.): Universals in Linguistic Theory. New York: Holt, Rinehart, and Winston, 1-88.
26. Moskey, Stephen T. (1978) Semantic Structures and Relations in Dutch: An Introduction to Case Grammar. Washington, DC: Georgetown University Press.
27. Roger C. Schank and Robert P. Abelson, Scripts, plans, goals and understanding: an inquiry into human knowledge structures, Hillsdale, 1977. ISBN 0-470-99033-3.

  1. http://www.mt-archive.info/
  1. Handbook of Computational Statistics , http://fedc.wiwi.hu-berlin.de/xplore/ebooks/html/csa/node1.html
  2. http://www.statmt.org/moses/
  3. Syntax for Statistical Machine Translation, Bibliography for Statistical Machine Translation - http://www.clsp.jhu.edu/ws03/groups/translate/biblio.shtml
  4. MT: The Current Research Landscape, Roland Kuhn and Pierre Isabelle, August 2009 - http://summitxii.amtaweb.org/summitxii-keynote-pierre-and-roland.pdf
  5. Open-source machine translation: an opportunity for minor languages, Mikel L. Forcada - http://www.dlsi.ua.es/~mlf/docum/forcada06p2.slides.pdf

[1] Barbara J. Grosz, Karen Sparck Jones, Bonnie Lynn Webber. 1986. "Readings in Natural Language Processing,"
I. Syntactic Models
1. On the Mathematical Properties of Linguistic Theories — C. R. Perrault
Computational Linguistics, 10, 1984, 165-176.
2. Multiple-Path Syntactic Analyzer — S. Kuno and A. Oettinger
Information Processing-62, 1963, 306-312.
3. An Efficient Context-Free Parsing Algorithm — J. Earley
CACM 13(2), 1970, 94-102.
4. Algorithm Schemata and Data Structure in Syntactic Processing — M. Kay
CSL-80-12, October 1980.
5. Transition Network Grammars for Natural Language Analysis — W. A. Woods
CACM 3 (10), 1970, 591-606.
6. A Computational Account of Some Constraints on Language — M. Marcus
Theoretical Issues in Natrual Language Processing-2, D. Waltz, ed., 236-246, Urabna-Champaign : Association for Computational Linguistics, 1978.
7. Definite Clause Grammars for Language Analysis — F. Pereira and D. Warren
Artificial Intelligence 13, 1980, 231-278.
8. +Parsing in Functional Unification Grammar — M. Kay
Natural Language Parsing, D. R. Dowty, Lkartunnen, and A. Zwicky, eds., 251-278.
9. DIAGRAM : A Grammar for Dialogues — J. Robinson
CACM 25(1), 1982, 27-47.
II. Semantic Interpretation
10. +Tarskian Semantics, or No Notation Without Denotation ! — D. McDermott
Cognitive Science 2(3), 1978, 277-282.
11. +Language and Memory — R. Schank
Cognitive Science 4(3), 1980, 243-284.
// The best overall introduction for the work of Schank. *
12. +An Intelligent Analyzer and Understander of English — Y. Wilks
CACM 18(5), 1975, 264-274.
13. +Semantics and Quantification in Natural Language Question Answering — W. A. Woods.
Advances in Computers, vol. 17, M. Yovits, ed., 2-64, New York : Press, Inc.
14. +A Procedural Model of Language Understanding — T. Winograd
Computer Models of Thought and Language, R.Schank and K.Colby, eds, 152-186, New York : W.H.Freeman, 1973. (Almost the same as the following paper : Edited by Antonio Zampolli, Linguistic Structures Processing Lecture 2 “SHRDLU : A system for dialog,” — Terry Winograd, 423-458)
15. Semantic Aspects of Translation — G. Hendrix
Understanding Spoken Language, D. Walker, ed.,193-226.
16. +Problems in Logical Form — R. Moore
Proceedings of the 19th Annual Meeting, Standford, California, 117-124. Urabna-Champaign : Association for Computational Linguistics, 1981.
17. From English to Logic : Context-Free Computation of "Conventional" Logical Translations — L. Schubert and F.J.Pelletier
American Journal of Computational Linguistics 10, 1984, 165-176.
18. A New Semantic Computation While Parsing : Prepsupposition and Entailment — R.M.Weischedel
Syntax and Semantics II: Presupposition, C. Oh and D. Dineen, eds., 155-182, New York : Academic Press, 1979.
III. Discourse Interpretation
19. +Jack and Janet in Search of a Theory of Knowledge — E. Charniak
Advance Paper from the Third International Joint Conference on Artificial Intelligence, Standford, California, 337-343, Los Altos : William Kaufmann, Inc., 1973.
20. +Resolving Pronoun References — J. Hobbs
Lingua 44, 1978, 311-338.
21. +The Representation and Use of Focus in a System for Understanding Dialogs - B. Grosz
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, Cambridbe, Massachusetts, 67-76, LosAltos : William Kaufmann, Inc., 1977.
22. +Focusing in the Comprehension of Definite Anaphora — C. Sidner
Computational Model of Discourse, M. Brady and R. Berwick, eds., 167-330, Cambridge, Mass : MIT Press, 1983.
23. +So What Can We Talk About Now ? — B. Webber
Computational Models of Discourse, M. Brady and R. Berwick, eds., 331-371, Cambridge, Mass : MIT Press, 1983.
IV. Language Action and Intention
24. +Generation as a Social Action - B. Bruce
Theoretical Issue in Natural Language processing-1, 64-67. Urbana-Champaign : Association for Computational Linguistic, 1975.
25. +Elements of a Plan-Based Theory of Speech Acts — P. Cohen and C.R. Perrault
Cognitive Science 3(3), 1979, 177-212.
26. +Analyzing Intention in Utterances — J. Allen and C.R.Perrault
Artificial Intellignece 15, 1980, 143-178.
27. +Points : A Theory of the Structure of Stories in Memory — R. Wilensky
Strategies for Natural-Language Processing, W.Lehnert and M. Rengle, eds., 345-374, Hillsdale : Lawrence Erlbaum Associates, 1982.
V. Generation
28. +Discourse Strategies for Generating Natural-Language Text — K.McKeown
Artificial Intellignece 27, 1985, 1-42.
29. +Planning English Referring Expressions — D. Appelt
Aftificial Intellignece 26, 1985, 1-33.
30. +Description Directed Control : Its Implications for Natural Language Generation
Computers and Mathematics 9(1), 1983, 111-130.
VI. Systems
31. +BASEBALL : An Automatic Question Answerer — B. Green, A. Wolf, C. Chomsky, and K. Laughery
Proceeding of the Western Joint Computer Conference 19, 1961, 219-224.
32. +Conversational Language Comprehension Using Integrated Pattern-Matching and Parsing — R.C.Parkison, K.M. Colby, and W.S. Faught
Artificial Intellignece 9, 1977, 111-134.
33. Developing a Natural Language Interface to Complex Data — G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum
ACM Trans. On Database Sys. 3(2), 1978, 105-147.
34. Transportability and Generality in a Natural-Language Interface System — P.Martin, D.Appelt, and F.Pereira
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 573-581.
35. +GUS, A Frame Driven Dialog System — D.Bobrow and J.S.Brown
Artificial Intelligence 8, 1977, 155-173.
36. +SAM — R. Cullingford
Inside Computer Understanding, R. Schank and C. Reisbeck, eds., 75-89, Hillsdale : Lawerence Erlbaum Associates, 1981.
37. A Conceptual Theory of Question Answering — W. Lehnert.
Proceeding of the Fifth International Joint Conference on Artificial Intelligence, Cambridge, Masschusetts, 158-164, Los Altos:William Kaufmann, Inc., 1977.
[2] +Gamma, Helm, Johnson, Vlissides, "Design Patterns — ,"
// Enumerate the important Pattern in Object Oriented Programming *

[3] +George lakeoff and Mark Johnson 1980 "Metaphor We Live By," The University of Chicago Press.
// List of many good example for Metaphor
1. Concepts We Live By
2. The Systematicity of Metaphorical Concepts
3. Metaphorical Systematicity : Highlighting and Hiding
4. Orientational Metaphors
5. Metaphor and Cultural Coherence
6. Ontological Metaphors
7. Personification
8. Metonymy
9. Challenges to Metaphorical Coherence
10. Some Further Example
11. The Partial Nature of Metaphorical Structuring
12. How is Our Conceptual System Grounded ?
13. The Grounding of Structural Metaphors
14. Causation : Partly Emergent and Partly Metaphorical
15. The Coherent Structuring of Experience
16. Metaphorical Coherence
17. Complex Coherences across Metaphors
18. Some Consequences for Theories of Conceptual Structure
19. Definition and Understanding
20. How Metaphor Can Give Meaning to Form
21. New Meaning
22. The Creation of Similarity
23. Metaphor, Truth, and Action
24. Truth
25. The Myths of Objectivism and Subjectivism
26. The Myth of Objectivism in Western Philosophy and Linguistics
27. How Metaphor Reveals the Limitations of the Myth of Objectivism
28. Some Inadeuacies of the Myth of Subjectivism
29. The Experientialist Alternative : Giving New Meaning to Old Myths
30. Understanding
[4] +George Lakoff. "Women, Fire, and Dangerous things - What Categories Reveal About the Mind, " - University of Chicago Press, 1986.
// The most important book for Cognitive Language Model . **
[5] Green, B.F., Wolf, A.K., Chomsky, C., and Laughery, K. 1963. Baseball : An automatic question answerer. In Feigenbaum and Feldman (Eds.), Computer and Thought. McGraw-Hill, New York, 207-233.
// A system that answer question based on knowledge in database, use Fuzzy matching to retrieve the correct record to answer the question.
*
[6] Heimir Geirsson and Michael Losonsky 1996 “Readings in Language and mind”
Philosophy of Language and Mind, 1950-90 – Tyler Burge
Philosophical Review 101 (1992).

PART I The Meaning of Language
1. Natural and Formal Language
1.1 The Semantic Conception of Truth and the Foundations of Semantics – Alfred Tarski
Philosophy and Phenomenological Research 4 (1944).
1.2 Truth and Meaning – Donald Davidson
Synthese 17 (1967).
1.3 Pragmatics – Robert C. Stalnaker
in G.Harman and D. Davidson, eds, Semantics of Natural Language (Dordrecht : D. Reidel, 1972).
1.4 Semantics – Mathematics or Psychology ? – Barbara Partee
in R. Bauerle, U.Egli, and A. von Stechow, eds, Semantics from Different Points of View (Berlin : Springer-Verlag, 1979).
2. Language and Communication
2.1 Meaning – H.P. Grice
Philosophical Review 66 (1957).
2.2 What Is a Speech Act ? – John R. Searle
Philosophy in America (Ithaca, NY: Cornell University Press, 1965)
2.3 Logic and Conversation – H.P. Grice
in P. Cole and J. Morgan, eds, Syntax and Semantics, Vol. 3 (New York :Academic Press, 1975)
2.4 Languages and Language – David Lewis
in K. Gunderson, ed., Language, Mind and Knowledge (Minneapolis : University of Minnesota Press, 1975).
3. Language and Environment
3.1 The Meaning of “Meaning” – Hilary Putnam
in K. Gunderson, ed., Language, Mind and Knowledge (minneapolis : University of Minnesota Press, 1975).

PART II The Meaning of Mind
4. Language and Mind
4.1 Sentences About Believing – Roderick M. Chisholm
Proceedings of the Aristotelian Society 56 (1955-6).
4.2 Language as Thought and as Communication – Wilfrid Sellars
Philosophy and Phenomenological Research 29 (1969).
4.3 Thought and Talk – Donald Davidson
Oxford University Press 1975. Reprinted from Mind and Language : Wolfson College Lectures 1974, ed. By Samual Guttenplan (1975).
5. Mind and Machine
5.1 Computing Machinery and Intelligence – Allan M. Turing
first appeared in Mind 59 (1950).
5.2 Is the Brain’s Mind a Computer Program ? – John Searle
Scientific American (January 1990).
5.3 Could a Machine Think ? – Paul M. Churchland and Patricia S. Churchland
6. Mind and Biology
6.1 Representational Systems – Fred Dretske
ch. 3 of Explaining Behavior (Cambridge, MA: MIT Press, 1988).
6.2 Thoughts Without Laws : Cognitive Science with Content – Ruth Garrett Millikan
Philosophical Review 95 (1986).
6.3 It’s About Time : An Overview of the Dynamical Approach to Cognition – Tim Van Gelder and Robert S. Port
in R. Port and T. van Gelder, eds, Mind as Mothon : Explorations in the Dynamics of Cognition (Cambridge, MA: Bradford/MIT Press, 1995).
7. Mind and Environment
7.1 Methodological Solipsism Considered as a Research Strategy in Cognitive Psychology – Jerry A. Fodor
Behavioral and Brain Sciences 3 (1980).
7.2 Individualism and Psychology – Tyler Burge
Philosophical Review 95 (1986).

PART III The Science of Mind and Language
8. Language and Cognition
8.1 Some Preliminaries to Pshcholinguistics – George A. Miller
American Phychologist 20 (1965).
8.2 A Review of B. F. Skinner’s Verbal Becavior – Norm Chromsky
first appeared in Language 35 (1959).
8.3 Family Resemblances : Studies in the Internal Structure of Categories – Eleanor Rosch and Carolyn B. Mervis
Cognitive Psychology 7 (1975).
8.4 Precis of Relevance : Communication and Cognition – Dan Sperber and Deirdre Wilson.
Behavioral and Brain Sciences.
9. Artificial Intelligence
9.1 The Role of Language in Cognition : A Computational Inquiry – Jill Fain Lehman, Allen Newell, Thad Polk, and Richard L. Lewis
in G. Harman, ed., Conceptions of the Mind : Essays in Honor of George Miller (Hillsdale, NJ: Lawrence Erlbaum).
9.2 On Learning the Past Tenses of English Verbs – David E. Rumelhart and James L. Mcclelland – Jeffery Elman
in J. L. McClelland, D.E.Rumelhart and the PDP Research Group, eds, Parallel Distributed Processing, vol. 2 (Cambridge, MA: MIT Press, 1986).
9.3 Grammatical Structure and Distributed Representations – Jeffery Elman
from Connectionism : Theory and Practice, edited by steven Davis.
9.4 Rules of Language – Steven Pinker
first appeared in Science 253 (1991).
[7] James Hampton "Conceptual Combination" In Knowledge, Concepts, and Categories edited by Koen Lamberts and David Shanks, MIT press, 1997.
// A good survay for Rosch, Lakeoff. *.
[8] Martin Kay, "Parsing in Functional Unification Grammar," Natural Language Parsing, D.R. Dowty, L. Kartunnen, and A.Zwicky, eds., 251-278, Cambridge, England : Cambridge University Press, 1982.
// The most popular parsing grammar used today. *
[9] Michael Brady and Robert C. Berwick, MIT press, 1983 “Computational Models of Discourse”
David D. McDonald "Natural Lanaguage Generation as a Computational Problem : an Introduction"
// A good model for Language Generation. *
[10] +Michael George Dyer 1983. "In-Depth Understanding - A computer model of integrated processing for Narrative Comprehension, " MIT press.
// The Integrated system BORIS that based on CD structure, Also good for understand the program writing that based on CD structure. Student of Lehnert. *
1. The Meaning of In-Depth Understanding
PART I. Recognizing Narrative Themes
2. Thematic Abstraction Units
3. Recognizing TAUs
4. The Role of AFFECT in Narratives
PART II Process Integration and Memory Interactions
5. Integrated Processing with a Unified Parser
6. +The Process of Comprehension
PART III Representing and Organizing Knowledge
7. Intentionality and MOPs
8. Memory Overlays with MOPs
9. A Spatial/Temporal Organization for Narratives
10. The Interpersonal Dimension
PART IV Synthesis : A Detailed Example
11. +Narrative Comprehension : A Detailed Example
12. Future Work and Conclusions
+I. Appendix : Narratives and Sample Q/A
+II. Appendix : CD, Goal, Plans, Scripts
+III. Appendix : McDYPAR - A Demon Parser
[11] +Michael George Dyer and Geunbae Lee “Goal/Paln Analysis via Distributed Semantic Representations in a Connectionist System,” Applied Intelligence, 5, 165-197 (1995). *
[12] Philip R. Cohen, Jerry Morgan, and Martha E. Pollack 1990 “Intentions in Communication”
1. +Introduction – Philip R. Cohen, Jerry Morghan, and Martha E. Pollack
2. +What is Intention ? – Michael E. Bratman.
3. Persistence, Intention, and Commitment – Philip R. Cohen and Hector J. Levesque.
4. Two Views of Intention : Comments on Bratman and on Cohen and Levesque.
5. Plans as Complex Mental Attitudes – Martha E. Pollack.
6. A Circumscriptive Theory of Plan Recognition – Henry Kautz.
7. On Plans and Plan Recognition : Comments on Pollack and on Kautz – W.A.Woods
8. Thward a Formal Theory of Communication and Speech Acts – Andrew J. I. Jones
9. An Application of Default Logic to Speech Act Theory – C. Raymond Perrault
10. Comments on Jones and on Perrault – Jerry Morgan
11. On the Unification of Speech Act Theory and Formal Semantics – Daniel Vanderveken
12. Rational Interaction as the Basis for Communication – Philip R. Cohen and Hactor J. Levesque
13. Comments on Vanderveken and on Cohen and Levesque. – Jarrold M. Sadock
14. The Meaning of Intgonational Contours in the Interpretation of Discourse – Janet Pierrehumberrt and Julia Hirshberg.
15. The Pierrehumberty-Hirshberg Theory of Intonational Meaning Made Simple : Comments on Pierrehumbert and Hirshberg – Jerry R. Hobbs
16. Accommodation, Meaning, and Implicature : Interdisciplinary Foundations for Pragmatics – Richmond H. Thomason.
17. Discourse Processing and Commonsense Plans – Diane J. Litman and James F. Allen
18. Communicative Intentions, Plan Recognition, and Pragmatics : Comments on Thomason and on Litman and Allen – Kent Bach
19. +Collective Intention and Actions – John R. Searle
20. +Plans for Discourse – Barbara J. Grosz and Candace L. Sidner
21. Artificial Intelligence and Collective Intentionality : Comments on Searle and on Grosz and Sidner – Jerry R. Hobbs
22. A Reply to Hobbs – Barbara J. Grosz and Candace L. Sidner
23. Referring as a Collaborative – Herbert H. Clark and Deanna Wilks-Gibbs.
[13] Quillian, R. "Semantic memory," Cambridge, Mass. : Bolt, Beranek and Newman, 1966.
// The first book for Semantic Network !
[14] Robert Wilensky, 1983"Planning and Understanding — A Computational Approach to Human Reasoning," Addision-Wesley Published.
// The book about Plan that using CD structure **
1. Introduction
2. Tenets of a Theory of Plans
3. Planning in Every day Situations
4. Meta-Planning
5. Explanation-Driven Understanding
6. Goal Relationship
7. Negative Goal Relationship
8. Reasoning About Goal Conflict
9. Reasoning about Goal Competition
10. Positive Goal Relationship
11. Computer Implementation — Representation of Task Network
12. Computer Implementation — Programs
[15] *Roger C. Shank, 1973 "Identification of Conceptualizations Underlying Natural Language," in R.C.Schank and K.M.Colby (des.), "Computer Models of Thought and Language, " W.H.Freeman, San Francisco, 1973.
[16] +Roger C. Schank, Janet L. Kolodner and Gerald DeJong “Conceptual Information Retrieval,”
[17] Roger C. Schank, N. Goldman, C.J. Rieger, and C. Riesbeck, 1973, Margie: Memory analysis, response generation, and inference on english. Proceedings of the 3rd International Joint Conference on Artificial Intelligence, 1973, 155-261.
// The famous MARGIE system of Schank.
[18] +Roger C. Schank and Charles J. Reiger III, "Inference and the Computer Understanding of Natural language," Artificial Intelligence 5(4), 1974, 373-412.
// They design 12 kinds of inferences, that is the base for MARGIE system. *

[19] +Roger C. Schank "Conceptual information processing," published by Eksevuer Science Publishing Company inc., 1975.
1. MARGIE
2. The Conceptual Approach to Language Processing
3. Conceptual Dependency Theory
4. Conceptual Analysis — by C.K. Riesbeck
5. Conceptual Memory and Inference — by C.J. Rieger III
6. Conceptual Generation — by N. Goldman
[20] Roger C. Schank and Robert Abelson, "Scripts Plans Goals and Understanding — An Inquiry into Human Knowledge Structure," Published by Lawrence Erlbaum Associates, Inc., 1977.
// The Best book to understand every part of High Level structure for Schank.
1. Introduction
2. Causal Chains
3. Scripts
4. Plan
5. Goals
6. Themes
7. Representation of Stories
8. Computer Programs
9. A Case Study in the Development of Knowledge Structure.
[21] +Roger C. Schank “Interestingness : Controlling Inferences,” Artificial Intelligence 12(1979), 273-297.
[22] Roger C. Schank and Christopher K. Riesbeck 1981. "Inside Computer Understanding — Five Programs Plus Miniatures", Lawrence Erlbaum Associates, Inc., Publishers.
// The best book with 5 program for SCRIPT, PLAN, ELI… that based on CD structure *
1. Our Approach to Artificial Intelligence
2. The theory Behind the Programs : Conceptual Dependency.
3. The Theory Behind the Programs : A Theory of Context
4. LISP
5. SAM - Richard Cullingford
A program for script
6. Micro SAM
7. PAM - Robert Wilensky
A program for plan
8. Micro PAM
9. TALE-SPIN - James Meehan
A program that write simple stories.
10. Micro TALE-SPIN
11. POLITICS - Jaime Carbonell
12. Micro POLITICS
+13. Conceptual Analysis of Natural Language - Lawrence Birnbaum and Mallory Selfridge
+14. Micro ELI
[23] Roger C. Schank 1982 "Dynamic Memory — A theory of reminding and learning in computers and people, " Cambridge University Press.
// The book for the Idea of MOP (Memory Operation Packet) based on CD structure
1. Intruduction to dynamic memory
PartI Reminding and processing
2. Reminding and memory
3. Failure-driven memory
4. Cross-contextual reminding
Part II Structures in memory
5. The kinds of structures in memory
6. MOPs
7. TOPs
8. Generalization and memory
Part III Generalization and learning
9. Generalized scenes and the universal MOP
10. Indexing and Search
Part IV Conclusion
11. Detailed example
12. Computer experiments
13. Some perspective
[24] +Roger C. Schank and Lawrence Birnbaum “Memory, Meaning and Syntax,” *
[25] +Roger C. Schank and David B. Leake “Creativity and Learning in a Case Based Explainer,” Artificial Intelligence 40(1989) 353-385.
[26] +Ronald J. Brachman and Hector J. Levesque "Readings in Knowledge Representation”
I. The Knowledge Representation Enterprise
1. Some Problems and Non-Problems in Representation Theory — Patric J. Hayes
Proc. AISB Summer Conference, University of Sussex, 1974, 63-79.
2. +Epistemological Problems of Artificial Intelligence — John McCarthy
Proc. IJCAI-77, Cambridge, MA, 1977, 1038-1044.
3. Prologue to "Reflection and Semantics in a Procedural Language" — Brian C. Smith
Ph.D. thesis and Tech. Report MIT/LCS/TR-272, M.I.T., Cambridbe, MA, 1982.
4. A Fundmental Tradeoff in Knowledge Representation and Reasoning — Hector J. Levesque and Ronald J. Brachman
Original version appeared as "A Fundamental Tradeoff in Knowledge Representation and Reasoning" (by Hector J. Levesque), Proc. CSCSI-84, London, Ontario, 1984, 141-152.
5. From Micro-Worlds to Knowledge Representation : AI at an Impasse — Hubert L. Dreyfus
in Mind Design, 161-204, edited by J. Haugeland, Cambridge, MA : The MIT Press, 1981. This version is excerpted (with minor revisions) from the Introduction to the second edition of his What Computers Can't Do (New York : Harper & Row, 1979).
II. Associational Representations
6. Word Concepts : A Theory and Simulation of Some Basic Semantic Capabilities — M. Ross Quillan
Behavorial Science 12, 1967, 410-430.
7. Inference and the Computer Understanding of Natural Language — Roger C. Schank and Charles J. Rieger III.
Artificial Intelligence 5(4), 1974, 373-412.
8. +Learning Structure Descriptions from Examples — Patrick H. Winston.
In The Pshchology of Computer Vision, 157-209, edited by P.H.Winston, New YorkMcGraw-Hill Book Company, 1975.
9. Intensional Concepts in Propositional Semantic Networks — Ronald J. Brachman
Cognitive Science 6(4), 1982, 291-330.
10. +On the Epistemological Status of Semantic Network — Ronald J. Brachman
in Associative Network : Representation and Use of Knowledge by Computers, 3-50, edited by N. V. Findler, New York : Academic Press, 1979.
11. What's in a Link : Foundations for Semantic Networks — William A. Woods
in Representation and Understanding : Studies in Cognitive Science, 35-82, edited by D.G.Bobrow and A.M.Collins, New York : Academic Press, 1975.
III. Structured Object Representations
12. +A Framework for Representing Knowledge — Marvin Minsky
in Mind Design, 95-128, edited by J. Jaugeland, Cambridge, MA: The MIT Press, 1981.
13. An Overview of KRL, a Knowledge Representation Language — Daniel G. Bogrow and Terry Winograd.
Cognitive Science 1(1), 1977, 3-46.
14. The Logic of Frames — Patrick J. Hayes
in Frame Conceptions and Text Understanding, 46-61, edited by D.Metzing, Berlin : Walter de Gruyter and Co., 1979.
IV. Formal Logic-Based Representations
15. +Programs with Common Sense — John McCarthy
in Semantic Information Processing, 403-418, edited by M.Minsky, Cambridge, MA: The MIT Press, 1968.
16. Prolegomena to a Theory of Mechanized Formal Reasoning — Richard W. Weyhrauch
Aftificial Intelligence 13 (1,2), 1980, 133-170.
17. On Inheritance Hierarchies with Exceptions — Davies W. Etherington and Raymond Reiter
Proc. AAAI-83, Washington, D.C., 1983, 104-108.
18. The Role of Logic in Knowledge Representation and Commonsense Reasoning — Robert C. Moore
Proc. AAAI-82, Pittsburgh, PA, 1982, 428-433.
V. Procedural Representations and Production Systems
19. AMORD : Explicit Control of Reasoning — Johan de Kleer, Jon Doyle, Guy L. Steele, Jr., and Gerald Jay Sussman
Proc. Symposium on Artificial Intelligence and Programming Language, SIGPLAN Notices 12(8), and SIGART Newsletter, No.64, August, 1977, 116-125.
20. Frame Representations and the Declarative/Procedural Controversy — Terry Winograd
in Representation and Understanding : Studies in Cognitive Science, 185-210, edited by D.B.Bobrow, and A.M.Collins, New York :Academic Press, 1975.
21. Production Rules as a Representation for a Knowledge-Based Consultation Program — Randall Davis, Bruce, Buchanan, and Edward Shortliffe
Aftificial Intelligence 8(1), 1977, 15-45.
22. Meta-Level Knowledge : Overview and Application — Randall Davis and Bruce G. Buchnan.
Proc. IJCAI-77, Cambridge, MA, August, 1977, 920-927.
VI. Other Approaches
23. On Reasoning by Default — Raymond Reiter
Proc TINLAP-2, Theoretical Issues In Natrual Language Processing-2, University of Illnois at Urbana-Champaign, 1978, 210-218.
24. KRYPTON : A Functional Approach to Knowledge Representation — Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque
FLAIR Technical Report No. 16, Fairchild Laboratory for Artificial Intelligence Research, Palo Alto, CA, May, 1983.
25. Afterthouthes on Analogical Representations — Aaron Sloman
Proc. Theoretical Issues in Natural Language Processing, Cambridge, MA, 1975, 164-168.
26. Problem-Solving with Diagrammatic Representations — Brian V. Funt.
Artificial Intelligence 13(3), 1980, 201-230.
27. An Inference Technique for Integrating Knowledge from Disparate Sources — Thomas D. Garvey, John D. Lowrance, and Martin A. Fishler.
Proc. IJCAI-81, Vancouver, B.C.,August, 1981, 319-325.
VII. Representations of Commonsense Knowledge
28. The Second Naïve Physics Manifesto — Patrick J. Hayes.
In Formal Theories of the Commonsense World, 1-36, edited by J.R.Hobbs and R.C.Moore, Norwood, NJ:Ablex Publishing Corp., 1985.
29. An Organization of Knowledge for Problem Solving and Language Comprehension — Chuck Rieger
Aftificial Intelligence 7(2), 1976, 89-127.
30. Maintaining knowledge about Temporal Intervals — James F. Allen
Communications of the ACM 26(11) 1983, 832-843.
31. First Order Theories of Individual Concepts and Propositions — John McCarthy
in Machine Intelligence 9, 129-147, edited by J.E.Hayes, D.Michie, and L.I.Mikulich, Chichester, England : Ellis Horwood, Ltd.,1979.
[27] Rosch, E. 1975. Cognitive representations of semantic categories, Journal of Experimental Psychology : General 104, 192-232.
[28] Rosch, E. 1978. Principle of categorization. In Cognition and categorization, E.Rosch & B. Lloyd (eds), 27-48. Hillsdale, New Jersey : Erlbaum.
[29] Rosch, E. & C.B. Mervis 1975. Family resemblances : studies in the internal structure of categories. Cognitive Psychology 7, 573-605.
[30] Roseman, Ira. Cognitive Aspects of Emotion and Emotional Behavior. 1979. Yale Pshchology Dept. Paper read at 87th Annual Convention of the American Psychological Association in NYC.
[31] +Stuart S. Shapiro “Encyclopedia of Artificial Intelligence”
+Deep Structure 230-231.
+Demons 232-233
+Discourse Understanding 233-245.
+Frame Theory 302-312 *

// A good Introduction for the Frame Theory
+Grammar, Augmented Transition Network 323-333.
+Grammar, Case 333-339.
+Grammar, Definite-Clause 339-342.
+Grammar, Generalized Phrase Structure 342-351.
+Grammar, Semantic 351-353.
+Grammar, Transformational 353-361.
+Inheritance Hierarchy 422-431.
+Intelligence 431-440.
+Natural-Language Generation 642- 655.
+Natural-Language Interface 655-660.
+Natural-Language Understanding 660-677.
+Question Answering 814-822.
[32] Schwartz, Steven P. 1987 “Applied Natural Language Processing,” published by Petrocelli Books Inc.
// The EASYTALK system derived from Shank’s CD theory
1. Natural Language Understanding by People.
2. Natural Language Understanding by Computers.
// The Best Introduction for Schank’s Theory, include programming example.
3. Artificial Intelligence in the Commercial World
4. Retrieving Information from Computer Data Bases
5. Data Base Retrieval Using Natural Language
6. Domain-Independent Natural Language Interface
7. Knowledge-Based Natural Language Interfaces
8. Evaluating Natural Language Interface.
9. Conversational Adivsory Systems
10. The Commercial Impact of the Technology
[33] Weizenbaum, J. 1966. ELIZA — A computer program for the study of natural language communication between man and machine. Comm. ACM 10, 8, 474-480.
[34] +Wendy G. Lehnert and Martin H. Ringle 1982, Strategies for Natural Language Processing.
1. +The State of the Art in Natural-Language Understanding — David L. Waltz
// A good Introduction for Natural Language Understanding. *

2. Realistic Language Comprehension — Christopher K. Riesbeck
3. Natural Communication Between Person and Computer — Bertram C. Bruce
4. +Parsing and Comprehending with Word Experts (A Theory and its Realization) — Steven Small and Chuck Reiger
// A system that use object (names Word Experts) to understand text.
5. +An Overview of the FRUMP System — Gerald DeJong
// A system that do news summarize based on the CD structure and Sketchy Script, Student of Shank. **
6. +A Framework for Conceptual Analyzers
7. +Conversation Failure — Martin H. Ringle and Bertram C. Bruce
8. +Toward an Understanding of Coherence in Discourse — Jerry R. Hobbs.
9. +Beyond Question Answering — Philip R. Cohen, C. Raymond Perrault, and James F. Allen
10. Adversary Arguments and the Logic of Personal Attacks — Margot Flowers, Rod McGuire, and Lawrence Birnbaum.
11. +Inference and Learning in a Computer Model of the Development of Language Comprehension in a Young Child. — Mallory Selfridge
12. +Inferring Building Blocks for Knowledge Representation — Sharon C. Salveter
13. Points : A Theory of the Structure of Stories in Memory — Robert Wilensky
14. +Plot Units : A Narrative Summarization Strategy — Wendy G. Lehnert
15. Metaphor : An Inescapable Phenomenon in Natural Language Comprehension — Jaime G. Carbonell
16. Context Recognition in Language Comprehension — Eugene Charniak
17. +Reminding and Memory Organization : An Introduction to MOPs. — Roger C. Schank.
18. +Some Thoughts on Procedural Semantics — Yorick Wilks
[35] Wendy G. Lehnert 1978. The Process of Question Answering — A computer Simulation of Cognition.
1. Problems, Previews, and Program
2. Motivation and Background
Part I Interpretation : Understanding Questions
3. Conceptual Categories for Questions
4. Recategorizing Questions by Inferential Analysis
Part II Memory searches : Finding an Answer
5. Content Specification
6. Searching Memory
7. Focus Establishment
8. Understanding What Did Not Happen
9. Finding the Best Answer
10. Conceptual Primitives for Physical Objects
11. More Problems
12. Perspective and Conclusions
[36] +Wendy G. Lehnert, Michael G. Dyer, Peter N. Johnson, C.J.Yang and Steve Harley “BORIS-An Experiment in In-Depth Understanding of Narratives,” Artificial Intelligence 20(1983) 15-62.
[37] +Cohen, P. R., and H.J.Levesque. 1990a. "Intention is choice with commitment," Artificial Intelligence 42, 3.
[38] +Grosz, B. J., Appelt, P.Martin, and F. Pereira. 1987. "TEAM: An experiment in the design of transportable natural-language interface," Artificial Intellignece 32, 2:173-244.
[39] +Palmer, M., R. Passonneau, C. Wier, and T. Finin. 1993. "The KERNEL text understanding system," Artificial Intelligence 63:17-68.
[40] +Pereira, F.C.N., and M. Pollack. 1991. "Incremental interpretation," Artificial Intelligence 50:37-82.
[41] +Haas, A.R. 1986. "A syntactic theory of belief and action," Artificial Intellignece 28, 3:245-292.
[42] +Chincor, N., L. Hirschman, and D. Lewis. 1993. "Evaluating message understanding systems : : An Analysis of the Third Message Understanding Conference (MUC-3)," Computational Linguistics 19, 3:409-450.
[43] +Cohen, R. 1987. "Analyzing the structure of argumentative discourse," Computational Linguistics 13, 1-2:11-24.
[44] +Grosz, B. J. and C. Sidner. 1986. "Attention, intention, and the structure of discourse," Computational Linguistics 12, 3.
[45] +Warren, D.H.D., and F.C.N.Pereira. 1982. "An efficient easily adaptable system for interpreting natural language queries," Computational Linguistics 8, 3-4:110-122.


[46] +Cohen, P. R., J. Morgan, and M. Pollack. 1990. Intentions in Communication. Cambridbe, MA: MIT Press.
+1. Grosz, B. J., and C. Sidner. 1990. "Plans for discourse. " in Cohen et al. (1990), 417-444.
+2. Perrault, C. R. 1990. "An application of default logic to speech act theory. " In Cohen et al. (1990), 161-186.
+3. Pierrehumbert, J., and J. Hirschberg. 1990. "The meaning of intonational contours in the interpretation of discourse. " In Cohen et al. (1990), 271-312.
[47] +David D. McDonald “Description Directed Control : Its implications for Natural Language Generation,
[48] +IFIP 1988
+B. K. Bogurawv, A.A. Copestake and K. Sparck Jones “Inference in Natural Language Front Ends,”
+Dana S. Scott “Capturing Concepts with Data Structures,”
+Ronald M. Lee “Logic, Semantics and Data Modeling : An Ontology,”
[49] +C.D.Paice “The automatic generation of literature abstracts : an approach based on the identification of self-indicating phrases,”
[50] +Dauglas H. Fisher “Knowledge Acquisition Via Incremental Conceputal Clustering,”
[51] +Daphone Koller and Mehran Sahami “Hierarchically classifying documents using very few words,”
[52] +Carl J. Pollard “The Nature and Structure of Computational Linguistic Theory,” ROCLING
[53] +Martin Romacker Katja Market Udo Hahn “Lean Semantic Interpretation,”
[54] +Jeffrey D. Kirtner “ULINK : A Semantic-Driven Approach to Understanding Ungrammatical Input,”
[55] +Nikitas M. Sgouros “Dynamic, User-Centered Resolution in Interactive Stories,”
[56] +Srinivas Narayanan “Reasoning About Actions in Narrative Understanding,”
[57] +Robert BAUD, Christian LOVIS, Laurence ALPAY, Anne-Marie RASSINOUX, Jean-Raoul SCHERRER, Anthony NOWLAN, Alan RECTOR “Modeling for Natural Language Understanding,” , mbi,dkfz-hiedelberg.de/helios/doc/nlp/Baud93a.html
[58] +Jonn McCarthy “An Example for Natural Language Understanding and the AI problems it Raises,” – www-formal.standford.edu/jmc/mrhug/mrhug.html
[59] +Claire Cardie and Wendy Lehnert “A Cognitively Plausible Approach to Understanding Complex Syntax,”


[60] Computational Linguistic 9, 3-4 (special issue on ill-form input), 1983.
[61] Computational Linguistic 14, 2 (special issue on tense and aspect), 1988.
[62] Hirschberg, J., and D.J. Litman. 1993. "Empirical studies on the disambiguation of cue phrases," Computational Linguistics 19, 3, 501-530.
[63] Webber, B.L. 1988 "Tense as discourse anaphora," Computational Linguistics 14, 2:61-73.
[64] Walker, M. 1989. "Evaluating discourse processing algorithms," Proc. ACL, 251-261.
[65] Ballard, B. 1988. "A general treatment of comparative for natural language question answering," Proc. ACL, 41-48.
[66] Grosz, B. J., A. K. Joshi, and S. Weinstein. 1983. "Providing a unified account of definite noun phrases in discourse," Proc. ACL, 44-50.
[67] Bates, M., M.G. Moser, and D. Stallard. 1986. "The IRUS transportable natural language database interface." In L. Kerschberg (ed.) Expert Databasse Systems." Redwood City, CA: Benjamin/Cummings.
[68] Borwn, J.S. , and R.R.Burton. 1975. "Multiple representations of knowledge for tutorial reasoning." In D. G. Bobrow and A. Collins (eds.) Representation and Understanding. New York : Academic Press.
[69] Dowty, D. R., (ed.). 1986. "Tense and aspect in discourse," Linguistics and Philosphy 9, 1 (special issue).
[70] Dowty, D. R., (1989. "On the semantic content of the notion 'thematic role'." In G. Chierchia, B. Partee, and R. Turner (eds.) Properties, Type and Meaning. Vol. 2. Dordrecht : Kluwer Academic Publisher, 69-130.
[71] Grishman, R., and J. Sterling. 1992. "Acqisition of selectional patterns," Proc. 14th COLING, 658-664.
[72] Grosz, B. J. 1974. "The structure of task oriented dialog," IEEE Symp. On Speech Recognition. Reprinted in L. Polanyi (ed.). 1986. The Structure of Discourse. Norwood, NJ:Ablex.
[73] Jacobs, P., and L. Rau. 1990. "SCISOR: A system for extracting information from on-line news," Commun. of the ACM 33, 11, 88-97.
[74] Katz, J. J., and J. A. Fodor. 1963. "The structure of semantic theory," Language 39, 170-210. Reprinted in J. A. Fodor et al. (eds.). 1984. The Structure of Language : Reading the the Philosophy of Language. Englewood Cliffs, NJ: Prentice-Hall.
[75] Kay, M. 1973. "The MIND system. " in R. Rustin (ed.), Natrual Language Processing. New York : Algorithmics Press, 155-188.
[76] Levin, J., and J. Moore. 1977. "Dialogue-games : Metacommunication structures for natural language interaction, " Cognitive Science 1, 4:395-421.
[77] Norvig, P. 1992. Paradigms of Artificial Intellignece Programming. San Mateo, CA: Morgan Kaufmann.
[78] Rao, A., and M. Georgeff. 1991. "Modeling rational agent within a BDI architecture." In J. F. Allen, R. Fikes, and E. Sandewall (eds.), Proc. 2nd Conf. On principles of Knowledge Representation and Reasoning. San Mateo, CA; Morgan Kaufmann, 473-484.
[79] Searle, J. R. 1975. "Indirect speech acts." In P. Cole and J. Morgan (eds.), Syntax and Semantics. Vol. 3 : Speech Acts. New York : Academic Press, 59-82.
[80] Webber, B.L. 1991. "Structure and ostension in the interpretation of discourse diexis," Language and Cognitive Processes 6: 107-135.
[81] +Woods, W. A. 1977. "Lunar rocks in natural English : Explorations in natrual language question answering." In A. Zampoli (ed.), Linguistic Structures Processing. New York : Elsevier North Holland.
[82] Gottlob Frege , “On Sense and Nominatum”
中文版 ”論函義與指稱” 收錄於 “語言哲學名著選輯”, 涂紀亮主編, 中國大陸簡體版, 生活、讀書、新知 三聯書店, 1988.
內容摘要:“a=a, a=b, 三角形三中線交點 a.b = b.c 但函義不同, — 符號 v.s. 函義 v.s 所指 “
[83] 董振東 - How-Net
[84] 吳蔚天, 羅建林, 1994 “漢語計算語言學 – 漢語形式語法和形式分析”, 中國大陸簡體版, 北京:電子工業出版社。
[85] 吳蔚天, 1999 “漢語計算語意學 – 關係、關係語意場和形式分析”, 中國大陸簡體版, 北京:電子工業出版社。
[86] 賈彥德, 1992 “漢語語意學”, 中國大陸簡體版, 北京大學出版社。
[87] 李幼蒸, 1997 “理論符號學導論—卷二:語意符號學 — 意義的理論基礎”, 中國大陸簡體版,台北唐山出版社 – 本書原由北京中國社會科學出版社於 1993 年出版。
[88] “現代邏輯科學導引”, 上/下冊 王雨田主編, 中國大陸簡體版, 中國人民大學出版社
朱水林, “邏輯語意學”, 上冊 431-479.
陳宗明, “自然語言邏輯”, 下冊 431-464
[89] 方立, 1992 “美國語言學理論研究” 北京語言學院出版社.
[90] 何新 “反思與挑戰” 風雲時代出版社 – 台灣繁體版
251 – 271 “簡論「歷史概念集合」” 原載於『學術月刊』 1980年第 11 期。
273 - 293 “論進化分類學的概念結構” 原載於『自然辯證法通訊』 1981年第 4 期。
294 – 316 “論邏輯思維的本體論基礎” 原載於『外國哲學』第五輯
[91] Chierchia, G., and S. Mcconnell-Ginet. 1990.Meaning and Grammar. Cambridge, MA:MIT Press.
251 – 271 “簡論「歷史概念集合」” 原載於『學術月刊』 1980年第 11 期。
273 - 293 “論進化分類學的概念結構” 原載於『自然辯證法通訊』 1981年第 4 期。
介紹 Montague Grammar.
[92] Montague, Richard (1974) Formal Philosophy : Selected Papers of Richard Montague, ed. By Richmond Thomason, Yale University Press, New Heaven.
[93] Ron Sun “Integrating Rules and Connectionism for Robust Commonsense Reasoning,” John Wiley & Sons, Inc. 1994.
Montague, Richard (1973) “The Proper Treatment of Quantification in Ordinary English”, in J. Hintikka, J. Moravsilk, and P. Suppes (eds.) Approaches to Natural Language, Reidel, Dordrecht.
Montague, Richard (1970) “Universal Grammar”, Theoria 36, 373-398.
Montague, Richard (1970) “English as a Formal Language”, in B. Visentini, et al. (eds.) Linguaggi nella Societa a nella Tecnica, Milan. (reprinted in Montague, 1974).
Montague, Richard (1970) “Pragmatics and Intensional Logic”, Synthese 22, 68-94.
Montague, Richard (1969) “On the Nature of Certain Philosophical Entities”, The Monist 53, 159-194.
Montague, Richard (1968) “Pragmatics, in R. Kiblansky (ed.) Contemporary Philosophy : A Survey, Florence, pp. 102-122.


[94] Carbonell, J. Toward a self-extending parser. In Proceeding of the 17th Annual Meeting of the Association for Computational Linguistics (La Jolla, Ca., Aug. 11-12). ACL Menlo Park, Ca., 1979, pp. 3-7.
[95] DeJong, G. Prediction and substantiation: A new approach to natural language processing. Cog. Sci. 3, 3(mar. 1979) 251-173.
[96] Grishman, R., and Kittredge, R., Eds. Analyzing Language in Restricted Domains : Sublanguage Description and Processing. Lawrence Erlbaum. Hillsdale, N.J., 1986.
[97] Jacobs, P.S. Language analysis in not-so-limited domains. In Proceedings of the ACM-IEEE Computer Society Fall Joint Computer Conference. (Dallas, Tx., Nov. 2-6). ACM and IEEE-CS, New Yorkand Washington, D.C., pp. 247-259.
[98] Jacobs, P.S. Knowledge-intensive natural language generation. Artif. Intel. 33, 3 (Nov. 1987), 325-378.
[99] Jacobs, P.S., Ed. Proceedings of the AAAI Spring Symposium Series : Text Based Intelligent Systems. The Amer. Assoc. for Artificial Intelligence, (Palo Alto, Ca., 1990).
[100] Jacobs, P.S., and Rau, L.F. Ace : Associating language with meaning. In Proceedings of the Sixth European Conference on Artificial Intelligence (Pisa, Italy, Sept. 5-7). AICA/AISB. Pp. 137-146.
[101] Jacobs, P.S.,and Zernik, U. Acquiring lexical knowledge from text : A case study. In Proceedings of the 7th National Conference on Artificial Intelligence (St. Paul., Mn., 1988), pp 739-744.
[102] Lebowitz, M. Memoruy-based parsing. Artif. Intel. 21, 4(Dec. 1983).
[103] Rau, L.F., and Jacobs, P.S. Integrating top-down and bottom-up strategies in a text-processing system. In Proceedings of the 2nd Conference on Applied Natural Language Processing (Morristown, N.J. ACL, Menlo Park, CA., 1988), pp. 129-135.
[104] Tibgm R.M., et al. RUBRIC III: An object-oriented expert system for information retrieval. In Proceeding of the 2nd Annual IEEE Symposium on Expert Systems in Government (McLean, Va., Oct. 2-0-24). IEEE-CS, Washington, D.C., 1986, pp. 106-115.

Facebook

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License