Numeric.js 在 node.js 平台中的測試情況

JavaScript

簡介

歷史

開發工具

基本語法

運算式

分枝

迴圈

函數

陣列

物件導向

原型

封裝

繼承

多型

this

控制流程

進階功能

Eval 函數

Closure

JSONP

小書籤

字串

正規表達式

除錯方法

伺服端

播 midi

cookie

套件

ccc函式庫

2D 繪圖

3D 繪圖

影像處理

訊號處理

語音處理

數學計算

tex 數學式

格式轉換

桌面應用

自然語言

地理資訊

平台

Node.js

jQuery

Google

numeric.js

Titanium

引擎

語法

作品

翻譯精靈

繪圖精靈

DotWiki

流程

前端工程師

後端工程師

css

訊息

相關網站

參考文獻

最新修改

簡體版

English

程式:NumericTest.js

var util = require('util');
var nu=require('./numeric');              // 注意,./ 代表 circle 與此程式放在同一個資料夾底下。

var title=function(str) {
  console.log("> "+exp+"\n"+nu.prettyPrint(eval(exp))+"\n");
}
var run=function(exp) {
  console.log("> "+exp+"\n"+nu.prettyPrint(eval(exp))+"\n");
}

// Numerical analysis in Javascript
run("A = [[1,2,3],[4,5,6]]");
run("x = [7,8,9]");
run("b = nu.dot(A,x)");
run("y = [10,1,2]");
run("nu['+'](x,y)");
run("nu['>'](x,y)");
run("nu.add(x,y)");
run("nu.add([1,2],[3,4],[5,6],[7,8])");
run("A = [[1,2,3],[4,5,6],[7,1,9]]");
run("nu.inv(A)");
run("pi = 3.141592653589793");
run("nu.precision = 10"); 
run("pi");
run("nu.precision = 4");
run("pi");
run("nu.identity(100)");
run("I4 = nu.identity(4)");
run("nu.largeArray = 2; I4");
run("nu.largeArray =50; I4");

// Math Object functions
run("nu.exp([1,2])");
run("nu.exp([[1,2],[3,4]])");
run("nu.abs([-2,3])");
run("nu.acos([0.1,0.2])");
run("nu.asin([0.1,0.2])");
run("nu.atan([1,2])");
run("nu.atan2([1,2],[3,4])");
run("nu.ceil([-2.2,3.3])");
run("nu.floor([-2.2,3.3])");
run("nu.log([1,2])");
run("nu.pow([2,3],[0.25,7.1])");
run("nu.round([-2.2,3.3])");
run("nu.sin([1,2])");
run("nu.sqrt([1,2])");
run("nu.tan([1,2])");

// Utility functions
run("nu.dim([1,2])");
run("nu.dim([[1,2,3],[4,5,6]])");
run("nu.same([1,2],[1,2])");
run("nu.same([1,2],[1,2,3])");
run("nu.same([1,2],[[1],[2]])");
run("nu.same([[1,2],[3,4]],[[1,2],[3,4]])");
run("nu.same([[1,2],[3,4]],[[1,2],[3,5]])");
run("nu.same([[1,2],[2,4]],[[1,2],[3,4]])");
run("nu.rep([3],5)");
run("nu.rep([2,3],0)");
run("sum = nu.mapreduce('accum += xi','0'); sum([1,2,3])");
run("sum([[1,2,3],[4,5,6]])");
run("nu.any([false,true])");
run("nu.any([[0,0,3.14],[0,false,0]])");
run("nu.any([0,0,false])");
run("nu.all([false,true])");
run("nu.all([[1,4,3.14],['no',true,-1]])");
run("nu.all([0,0,false])");
run("add = nu.pointwise(['x[i]','y[i]'],'ret[i] = x[i]+y[i];'); add([1,2],[3,4])");
run("nu.diag([1,2,3])");
run("nu.identity(3)");
run("nu.random([2,3])");
run("nu.linspace(1,5)");
run("nu.linspace(1,3,5)");

// Arithmetic operations
run("nu.addVV([1,2],[3,4])");
run("nu.addVS([1,2],3)");
run("nu.add(1,[2,3])");
run("nu.add([1,2,3],[4,5,6])");
run("nu.sub([1,2],[3,4])");
run("nu.mul([1,2],[3,4])");
run("nu.div([1,2],[3,4])");
run("v = [1,2,3,4]; nu.addeq(v,3); v");
run("nu.subeq([1,2,3],[5,3,1])");
run("nu.neg([1,-2,3])");
run("nu.isFinite([10,NaN,Infinity])");
run("nu.isNaN([10,NaN,Infinity])");

// Linear algebra
run("nu.dotVV([1,2],[3,4])");
run("nu.dotVM([1,2],[[3,4],[5,6]])");
run("nu.dotMV([[1,2],[3,4]],[5,6])");
run("nu.dotMMbig([[1,2],[3,4]],[[5,6],[7,8]])");
run("nu.dotMMsmall([[1,2],[3,4]],[[5,6],[7,8]])");
run("nu.dot([1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9])");
run("nu.dot([1,2,3],[4,5,6])");
run("nu.dot([[1,2,3],[4,5,6]],[7,8,9])");
run("nu.solve([[1,2],[3,4]],[17,39])");
run("LU = nu.LU([[1,2],[3,4]])");
run("nu.LUsolve(LU,[17,39])");
run("nu.det([[1,2],[3,4]])");
run("nu.det([[6,8,4,2,8,5],[3,5,2,4,9,2],[7,6,8,3,4,5],[5,5,2,8,1,6],[3,2,2,4,2,2],[8,3,2,2,4,1]])");
run("nu.inv([[1,2],[3,4]])");
run("nu.transpose([[1,2,3],[4,5,6]])");
run("nu.transpose([[1,2,3,4,5,6,7,8,9,10,11,12]])");
run("nu.norm2([1,2])");
run("nu.tensor([1,2],[3,4,5])");

// Data manipulation
run("nu.parseDate(['1/13/2013','2001-5-9, 9:31'])");
run("nu.parseFloat(['12','0.1'])");
run("nu.parseCSV('a,b,c\\n1,2.3,.3\\n4e6,-5.3e-8,6.28e+4')");
run("nu.toCSV([[1.23456789123,2],[3,4]])");
// run("nu.getURL('tools/helloworld.txt').responseText");

// Complex linear algebra
run("z = new nu.T(3,4)");
run("z.add(5)");
run("w = new nu.T(2,8)");
run("z.add(w)");
run("z.mul(w)");
run("z.div(w)");
run("z.sub(w)");
run("z = new nu.T([1,2],[3,4])");
run("z.abs()");
run("z.conj()");
run("z.norm2()");
run("z.exp()");
run("z.cos()");
run("z.sin()");
run("z.log()");
run("A = new nu.T([[1,2],[3,4]],[[0,1],[2,-1]])");
run("A.inv()");
run("A.inv().dot(A)");
run("A.get([1,1])");
run("A.transpose()");
run("A.transjugate()");
run("nu.T.rep([2,2],new nu.T(2,3))");

// Eigenvalues
run("A = [[1,2,5],[3,5,-1],[7,-3,5]]");
run("B = nu.eig(A)");
run("C = B.E.dot(nu.T.diag(B.lambda)).dot(B.E.inv())");

// Singular value decomposition (Shanti Rao)

run("A = [[22,10,2,3,7],[14,7,10,0,8],[-1,13,-1,-11,3],[-3,-2,13,-2,4],[9,8,1,-2,4],[9,1,-7,5,-1],[2,-6,6,5,1],[4,5,0,-2,2]]");
run("nu.svd(A)");

// Sparse linear algebra

run("A = [[1,2,0],[0,3,0],[2,0,5]]; SA = nu.ccsSparse(A);");
run("A = nu.ccsSparse([[ 3, 5, 8,10, 8],[ 7,10, 3, 5, 3], [ 6, 3, 5, 1, 8], [ 2, 6, 7, 1, 2], [ 1, 2, 9, 3, 9]])");
run("nu.ccsFull(A)");
run("nu.ccsDot(nu.ccsSparse([[1,2,3],[4,5,6]]),nu.ccsSparse([[7,8],[9,10],[11,12]]))");
run("M = [[0,1,3,6],[0,0,1,0,1,2],[3,-1,2,3,-2,4]]; b = [9,3,2]; x = nu.ccsTSolve(M,b)");
run("nu.ccsDot(M,[[0,3],[0,1,2],x])");
run("LUP = nu.ccsLUP(A)");
run("nu.ccsFull(nu.ccsDot(LUP.L,LUP.U))");
run("x = nu.ccsLUPSolve(LUP,[96,63,82,51,89])");
run("X = nu.trunc(nu.ccsFull(nu.ccsLUPSolve(LUP,A)),1e-15)"); // Solve LUX = PA
run("nu.ccsLUP(A,0.4).P");
run("A = nu.ccsSparse([[1,2,0],[0,3,0],[0,0,5]])");
run("B = nu.ccsSparse([[2,9,0],[0,4,0],[-2,0,0]])");
run("nu.ccsadd(A,B)");
run("X = [[0,0,1,1,2,2],[0,1,1,2,2,3],[1,2,3,4,5,6]]");
run("SX = nu.ccsScatter(X)");
run("nu.ccsGather(SX)");

// Coordinate matrices
run("lu = nu.cLU([[0,0,1,1,1,2,2],[0,1,0,1,2,1,2],[2,-1,-1,2,-1,-1,2]])");
run("nu.cLUsolve(lu,[5,-8,13])");
run("g = nu.cgrid(5)");
run("coordL = nu.cdelsq(g)");
run("L = nu.sscatter(coordL)"); // Just to see what it looks like
run("lu = nu.cLU(coordL); x = nu.cLUsolve(lu,[1,1,1,1,1,1,1,1,1]);");
run("nu.cdotMV(coordL,x)");
run("G = nu.rep([5,5],0); for(i=0;i<5;i++) for(j=0;j<5;j++) if(g[i][j]>=0) G[i][j] = x[g[i][j]]; G");
run("nu.imageURL(nu.mul([G,G,G],200))");
run("nu.cgrid(6,'L')");
run("nu.cgrid(5,function(i,j) { return i!==2 || j!==2; })");

// Cubic splines
run("nu.spline([1,2,3,4,5],[1,2,1,3,2]).at(nu.linspace(1,5,10))");
run("nu.spline([1,2,3,4,5],[1,2,1,3,2],0,0).at(nu.linspace(1,5,10))");
run("nu.spline([1,2,3,4],[0.8415,0.04718,-0.8887,0.8415],'periodic').at(nu.linspace(1,4,10))");
run("nu.spline([1,2,3],[[0,1],[1,0],[0,1]]).at(1.78)");
run("xs = [0,1,2,3]; nu.spline(xs,nu.sin(xs)).diff().at(1.5)");
run("xs = nu.linspace(0,30,31); ys = nu.sin(xs); s = nu.spline(xs,ys).roots()");

// Fast Fourier Transforms

run("z = (new nu.T([1,2,3,4,5],[6,7,8,9,10])).fft()");
run("z.ifft()");

// Quadratic Programming (Alberto Santini)

run("nu.solveQP([[1,0,0],[0,1,0],[0,0,1]],[0,5,0],[[-4,2,0],[-3,1,-2],[0,0,1]],[-8,2,0])");

// Unconstrained optimization
run("sqr = function(x) { return x*x; }; nu.uncmin(function(x) { return sqr(10*(x[1]-x[0]*x[0])) + sqr(1-x[0]); },[-1.2,1]).solution");
run("f = function(x) { return sqr(-13+x[0]+((5-x[1])*x[1]-2)*x[1])+sqr(-29+x[0]+((x[1]+1)*x[1]-14)*x[1]); }; x0 = nu.uncmin(f,[0.5,-2]).solution");
run("f = function(x) { return sqr(1e4*x[0]*x[1]-1)+sqr(Math.exp(-x[0])+Math.exp(-x[1])-1.0001); }; x0 = nu.uncmin(f,[0,1]).solution");
run("f = function(x) { return sqr(x[0]-1e6)+sqr(x[1]-2e-6)+sqr(x[0]*x[1]-2)}; x0 = nu.uncmin(f,[0,1]).solution");
run("f = function(x) { return sqr(1.5-x[0]*(1-x[1]))+sqr(2.25-x[0]*(1-x[1]*x[1]))+sqr(2.625-x[0]*(1-x[1]*x[1]*x[1])); }; x0 = nu.uncmin(f,[1,1]).solution");
run("f = function(x) { var ret = 0,i; for(i=1;i<=10;i++) ret+=sqr(2+2*i-Math.exp(i*x[0])-Math.exp(i*x[1])); return ret; }; x0 = nu.uncmin(f,[0.3,0.4]).solution");
run("y = [0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,0.37,0.58,0.73,0.96,1.34,2.10,4.39]; f = function(x) { var ret = 0,i; for(i=1;i<=15;i++) ret+=sqr(y[i-1]-(x[0]+i/((16-i)*x[1]+Math.min(i,16-i)*x[2]))); return ret; }; x0 = nu.uncmin(f,[1,1,1]).solution");
run("y = [0.0009,0.0044,0.0175,0.0540,0.1295,0.2420,0.3521,0.3989,0.3521,0.2420,0.1295,0.0540,0.0175,0.0044,0.0009]; f = function(x) { var ret = 0,i; for(i=1;i<=15;i++) ret+=sqr(x[0]*Math.exp(-x[1]*sqr((8-i)/2-x[2])/2)-y[i-1]); return ret; }; x0 = nu.div(nu.round(nu.mul(nu.uncmin(f,[1,1,1]).solution,1000)),1000)");
run("f = function(x) { return sqr(x[0]+10*x[1])+5*sqr(x[2]-x[3])+sqr(sqr(x[1]-2*x[2]))+10*sqr(x[0]-x[3]); }; x0 = nu.div(nu.round(nu.mul(nu.uncmin(f,[3,-1,0,1]).solution,1e5)),1e5)");
run("f = function(x) { return sqr(10*(x[1]-x[0]*x[0]))+sqr(1-x[0])+90*sqr(x[3]-x[2]*x[2])+sqr(1-x[2])+10*sqr(x[1]+x[3]-2)+0.1*sqr(x[1]-x[3]); }; x0 = nu.uncmin(f,[-3,-1,-3,-1]).solution");
run("y = [0.1957,0.1947,0.1735,0.1600,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246]; u = [4,2,1,0.5,0.25,0.167,0.125,0.1,0.0833,0.0714,0.0625]; f = function(x) { var ret=0, i; for(i=0;i<11;++i) ret += sqr(y[i]-x[0]*(u[i]*u[i]+u[i]*x[1])/(u[i]*u[i]+u[i]*x[2]+x[3])); return ret; }; x0 = nu.uncmin(f,[0.25,0.39,0.415,0.39]).solution");
run("y = [0.844,0.908,0.932,0.936,0.925,0.908,0.881,0.850,0.818,0.784,0.751,0.718,0.685,0.658,0.628,0.603,0.580,0.558,0.538,0.522,0.506,0.490,0.478,0.467,0.457,0.448,0.438,0.431,0.424,0.420,0.414,0.411,0.406]; f = function(x) { var ret=0, i; for(i=0;i<33;++i) ret += sqr(y[i]-(x[0]+x[1]*Math.exp(-10*i*x[3])+x[2]*Math.exp(-10*i*x[4]))); return ret; }; x0 = nu.uncmin(f,[0.5,1.5,-1,0.01,0.02]).solution");
run("f = function(x) { var ret=0, i,ti,yi,exp=Math.exp; for(i=1;i<=13;++i) { ti = 0.1*i; yi = exp(-ti)-5*exp(-10*ti)+3*exp(-4*ti); ret += sqr(x[2]*exp(-ti*x[0])-x[3]*exp(-ti*x[1])+x[5]*exp(-ti*x[4])-yi); } return ret; }; x0 = nu.uncmin(f,[1,2,1,1,1,1],1e-14).solution; f(x0)<1e-20;");
run("z = []; cb = function(i,x,f,g,H) { z.push({i:i, x:x, f:f, g:g, H:H }); }; x0 = nu.uncmin(function(x) { return Math.cos(2*x[0]); },[1],1e-10,function(x) { return [-2*Math.sin(2*x[0])]; },100,cb)");
run("z");

// Solving ODEs
run("sol = nu.dopri(0,1,1,function(t,y) { return y; })");
run("sol.at([0.3,0.7])");
run("nu.dopri(0,10,[3,0],function (x,y) { return [y[1],-y[0]]; }).at([0,0.5*Math.PI,Math.PI,1.5*Math.PI,2*Math.PI])");
run("nu.dopri(0,20,[2,0],function(t,y) { return [y[1], (1-y[0]*y[0])*y[1]-y[0]]; }).at([18,19,20])");
run("sol = nu.dopri(0,2,1,function (x,y) { return y; },1e-8,100,function (x,y) { return y-1.3; })");
run("sol = nu.dopri(0,2,1,function(x,y) { return y; },undefined,50,function(x,y) { return [y-1.5,Math.sin(y-1.5)]; })");

// Seedrandom (David Bau)
run("nu.seedrandom.seedrandom(3); nu.seedrandom.random()");
run("nu.seedrandom.random()");
run("nu.seedrandom.seedrandom(3); nu.seedrandom.random()");

執行結果

> A = [[1,2,3],[4,5,6]]
[[          1,          2,          3],
 [          4,          5,          6]]

> x = [7,8,9]
[          7,          8,          9]

> b = nu.dot(A,x)
[         50,        122]

> y = [10,1,2]
[         10,          1,          2]

> nu['+'](x,y)
[         17,          9,         11]

> nu['>'](x,y)
[false,true,true]

> nu.add(x,y)
[         17,          9,         11]

> nu.add([1,2],[3,4],[5,6],[7,8])
[         16,         20]

> A = [[1,2,3],[4,5,6],[7,1,9]]
[[          1,          2,          3],
 [          4,          5,          6],
 [          7,          1,          9]]

> nu.inv(A)
[[    -0.9286,     0.3571,    0.07143],
 [    -0.1429,     0.2857,    -0.1429],
 [     0.7381,    -0.3095,    0.07143]]

> pi = 3.141592653589793
      3.142

> nu.precision = 10
               10

> pi
      3.141592654

> nu.precision = 4
          4

> pi
      3.142

> nu.identity(100)
...Large Array...

> I4 = nu.identity(4)
[[          1,          0,          0,          0],
 [          0,          1,          0,          0],
 [          0,          0,          1,          0],
 [          0,          0,          0,          1]]

> nu.largeArray = 2; I4
...Large Array...

> nu.largeArray =50; I4
[[          1,          0,          0,          0],
 [          0,          1,          0,          0],
 [          0,          0,          1,          0],
 [          0,          0,          0,          1]]

> nu.exp([1,2])
[      2.718,      7.389]

> nu.exp([[1,2],[3,4]])
[[      2.718,      7.389],
 [      20.09,       54.6]]

> nu.abs([-2,3])
[          2,          3]

> nu.acos([0.1,0.2])
[      1.471,      1.369]

> nu.asin([0.1,0.2])
[     0.1002,     0.2014]

> nu.atan([1,2])
[     0.7854,      1.107]

> nu.atan2([1,2],[3,4])
[     0.3218,     0.4636]

> nu.ceil([-2.2,3.3])
[         -2,          4]

> nu.floor([-2.2,3.3])
[         -3,          3]

> nu.log([1,2])
[          0,     0.6931]

> nu.pow([2,3],[0.25,7.1])
[      1.189,       2441]

> nu.round([-2.2,3.3])
[         -2,          3]

> nu.sin([1,2])
[     0.8415,     0.9093]

> nu.sqrt([1,2])
[          1,      1.414]

> nu.tan([1,2])
[      1.557,     -2.185]

> nu.dim([1,2])
[          2]

> nu.dim([[1,2,3],[4,5,6]])
[          2,          3]

> nu.same([1,2],[1,2])
true

> nu.same([1,2],[1,2,3])
false

> nu.same([1,2],[[1],[2]])
false

> nu.same([[1,2],[3,4]],[[1,2],[3,4]])
true

> nu.same([[1,2],[3,4]],[[1,2],[3,5]])
false

> nu.same([[1,2],[2,4]],[[1,2],[3,4]])
false

> nu.rep([3],5)
[          5,          5,          5]

> nu.rep([2,3],0)
[[          0,          0,          0],
 [          0,          0,          0]]

> sum = nu.mapreduce('accum += xi','0'); sum([1,2,3])
          6

> sum([[1,2,3],[4,5,6]])
         21

> nu.any([false,true])
true

> nu.any([[0,0,3.14],[0,false,0]])
true

> nu.any([0,0,false])
false

> nu.all([false,true])
false

> nu.all([[1,4,3.14],['no',true,-1]])
true

> nu.all([0,0,false])
false

> add = nu.pointwise(['x[i]','y[i]'],'ret[i] = x[i]+y[i];'); add([1,2],[3,4])
[          4,          6]

> nu.diag([1,2,3])
[[          1,          0,          0],
 [          0,          2,          0],
 [          0,          0,          3]]

> nu.identity(3)
[[          1,          0,          0],
 [          0,          1,          0],
 [          0,          0,          1]]

> nu.random([2,3])
[[     0.6544,     0.1819,     0.1794],
 [    0.09216,     0.7122,     0.9166]]

> nu.linspace(1,5)
[          1,          2,          3,          4,          5]

> nu.linspace(1,3,5)
[          1,        1.5,          2,        2.5,          3]

> nu.addVV([1,2],[3,4])
[          4,          6]

> nu.addVS([1,2],3)
[          4,          5]

> nu.add(1,[2,3])
[          3,          4]

> nu.add([1,2,3],[4,5,6])
[          5,          7,          9]

> nu.sub([1,2],[3,4])
[         -2,         -2]

> nu.mul([1,2],[3,4])
[          3,          8]

> nu.div([1,2],[3,4])
[     0.3333,        0.5]

> v = [1,2,3,4]; nu.addeq(v,3); v
[          4,          5,          6,          7]

> nu.subeq([1,2,3],[5,3,1])
[         -4,         -1,          2]

> nu.neg([1,-2,3])
[         -1,          2,         -3]

> nu.isFinite([10,NaN,Infinity])
[true,false,false]

> nu.isNaN([10,NaN,Infinity])
[false,true,false]

> nu.dotVV([1,2],[3,4])
         11

> nu.dotVM([1,2],[[3,4],[5,6]])
[         13,         16]

> nu.dotMV([[1,2],[3,4]],[5,6])
[         17,         39]

> nu.dotMMbig([[1,2],[3,4]],[[5,6],[7,8]])
[[         19,         22],
 [         43,         50]]

> nu.dotMMsmall([[1,2],[3,4]],[[5,6],[7,8]])
[[         19,         22],
 [         43,         50]]

> nu.dot([1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9])
        285

> nu.dot([1,2,3],[4,5,6])
         32

> nu.dot([[1,2,3],[4,5,6]],[7,8,9])
[         50,        122]

> nu.solve([[1,2],[3,4]],[17,39])
[          5,          6]

> LU = nu.LU([[1,2],[3,4]])
{LU: 
[[          3,          4],
 [     0.3333,     0.6667]],
P: 
[          1,          1]}

> nu.LUsolve(LU,[17,39])
[          5,          6]

> nu.det([[1,2],[3,4]])
         -2

> nu.det([[6,8,4,2,8,5],[3,5,2,4,9,2],[7,6,8,3,4,5],[5,5,2,8,1,6],[3,2,2,4,2,2],[8,3,2,2,4,1]])
      -1404

> nu.inv([[1,2],[3,4]])
[[         -2,          1],
 [        1.5,       -0.5]]

> nu.transpose([[1,2,3],[4,5,6]])
[[          1,          4],
 [          2,          5],
 [          3,          6]]

> nu.transpose([[1,2,3,4,5,6,7,8,9,10,11,12]])
[[          1],
 [          2],
 [          3],
 [          4],
 [          5],
 [          6],
 [          7],
 [          8],
 [          9],
 [         10],
 [         11],
 [         12]]

> nu.norm2([1,2])
      2.236

> nu.tensor([1,2],[3,4,5])
[[          3,          4,          5],
 [          6,          8,         10]]

> nu.parseDate(['1/13/2013','2001-5-9, 9:31'])
[   1.358e12,   9.894e11]

> nu.parseFloat(['12','0.1'])
[         12,        0.1]

> nu.parseCSV('a,b,c\n1,2.3,.3\n4e6,-5.3e-8,6.28e+4')
[["a","b","c"],
 [          1,        2.3,        0.3],
 [        4e6,    -5.3e-8,      62800]]

> nu.toCSV([[1.23456789123,2],[3,4]])
"1.23456789123, 2
3, 4
"

> z = new nu.T(3,4)
{x: 
          3,
y: 
          4}

> z.add(5)
{x: 
          8,
y: 
          4}

> w = new nu.T(2,8)
{x: 
          2,
y: 
          8}

> z.add(w)
{x: 
          5,
y: 
         12}

> z.mul(w)
{x: 
        -26,
y: 
         32}

> z.div(w)
{x: 
     0.5588,
y: 
    -0.2353}

> z.sub(w)
{x: 
          1,
y: 
         -4}

> z = new nu.T([1,2],[3,4])
{x: 
[          1,          2],
y: 
[          3,          4]}

> z.abs()
{x: 
[      3.162,      4.472],
y: 
           }

> z.conj()
{x: 
[          1,          2],
y: 
[         -3,         -4]}

> z.norm2()
      5.477

> z.exp()
{x: 
[     -2.691,      -4.83],
y: 
[     0.3836,     -5.592]}

> z.cos()
{x: 
[     -1.528,     -2.459],
y: 
[     0.1658,     -2.745]}

> z.sin()
{x: 
[     0.2178,     -2.847],
y: 
[      1.163,      2.371]}

> z.log()
{x: 
[      1.151,      1.498],
y: 
[      1.249,      1.107]}

> A = new nu.T([[1,2],[3,4]],[[0,1],[2,-1]])
{x: 
[[          1,          2],
 [          3,          4]],
y: 
[[          0,          1],
 [          2,         -1]]}

> A.inv()
{x: 
[[      0.125,      0.125],
 [       0.25,          0]],
y: 
[[        0.5,      -0.25],
 [     -0.375,      0.125]]}

> A.inv().dot(A)
{x: 
[[          1,          0],
 [          0,          1]],
y: 
[[          0, -2.776e-17],
 [          0,          0]]}

> A.get([1,1])
{x: 
          4,
y: 
         -1}

> A.transpose()
{x: 
[[          1,          3],
 [          2,          4]],
y: 
[[          0,          2],
 [          1,         -1]]}

> A.transjugate()
{x: 
[[          1,          3],
 [          2,          4]],
y: 
[[          0,         -2],
 [         -1,          1]]}

> nu.T.rep([2,2],new nu.T(2,3))
{x: 
[[          2,          2],
 [          2,          2]],
y: 
[[          3,          3],
 [          3,          3]]}

> A = [[1,2,5],[3,5,-1],[7,-3,5]]
[[          1,          2,          5],
 [          3,          5,         -1],
 [          7,         -3,          5]]

> B = nu.eig(A)
{lambda: 
{x: 
[     -4.284,      9.027,      6.257],
y: 
           },
E: 
{x: 
[[     0.7131,    -0.5543,     0.4019],
 [    -0.2987,    -0.2131,     0.9139],
 [    -0.6342,    -0.8046,      0.057]],
y: 
           }}

> C = B.E.dot(nu.T.diag(B.lambda)).dot(B.E.inv())
{x: 
[[          1,          2,          5],
 [          3,          5,         -1],
 [          7,         -3,          5]],
y: 
           }

> A = [[22,10,2,3,7],[14,7,10,0,8],[-1,13,-1,-11,3],[-3,-2,13,-2,4],[9,8,1,-2,4],[9,1,-7,5,-1],[2,-6,6,5,1],[4,5,0,-2,2]]
[[         22,         10,          2,          3,          7],
 [         14,          7,         10,          0,          8],
 [         -1,         13,         -1,        -11,          3],
 [         -3,         -2,         13,         -2,          4],
 [          9,          8,          1,         -2,          4],
 [          9,          1,         -7,          5,         -1],
 [          2,         -6,          6,          5,          1],
 [          4,          5,          0,         -2,          2]]

> nu.svd(A)
{U: 
[[    -0.7071,    -0.1581,     0.1768,     0.2494,     0.4625],
 [    -0.5303,    -0.1581,    -0.3536,     0.1556,    -0.4984],
 [    -0.1768,     0.7906,    -0.1768,    -0.1546,     0.3967],
 [ -1.506e-17,    -0.1581,    -0.7071,    -0.3277,        0.1],
 [    -0.3536,     0.1581,  1.954e-15,   -0.07265,    -0.2084],
 [    -0.1768,    -0.1581,     0.5303,    -0.5726,   -0.05555],
 [ -7.109e-18,    -0.4743,    -0.1768,    -0.3142,     0.4959],
 [    -0.1768,     0.1581,  1.915e-15,     -0.592,    -0.2791]],
S: 
[      35.33,         20,       19.6,          0,          0],
V: 
[[    -0.8006,    -0.3162,     0.2887,    -0.4191,          0],
 [    -0.4804,     0.6325,  7.768e-15,     0.4405,     0.4185],
 [    -0.1601,    -0.3162,     -0.866,     -0.052,     0.3488],
 [  4.684e-17,    -0.6325,     0.2887,     0.6761,     0.2442],
 [    -0.3203,  3.594e-15,    -0.2887,      0.413,    -0.8022]]}

> A = [[1,2,0],[0,3,0],[2,0,5]]; SA = nu.ccsSparse(A);
[[          0,          2,          4,          5],
 [          0,          2,          0,          1,          2],
 [          1,          2,          2,          3,          5]]

> A = nu.ccsSparse([[ 3, 5, 8,10, 8],[ 7,10, 3, 5, 3], [ 6, 3, 5, 1, 8], [ 2, 6, 7, 1, 2], [ 1, 2, 9, 3, 9]])
[[          0,          5,         10,         15,         20,         25],
 [          0,          1,          2,          3,          4,          0,          1,          2,          3,          4,          0,          1,          2,          3,          4,          0,          1,          2,          3,          4,          0,          1,          2,          3,          4],
 [          3,          7,          6,          2,          1,          5,         10,          3,          6,          2,          8,          3,          5,          7,          9,         10,          5,          1,          1,          3,          8,          3,          8,          2,          9]]

> nu.ccsFull(A)
[[          3,          5,          8,         10,          8],
 [          7,         10,          3,          5,          3],
 [          6,          3,          5,          1,          8],
 [          2,          6,          7,          1,          2],
 [          1,          2,          9,          3,          9]]

> nu.ccsDot(nu.ccsSparse([[1,2,3],[4,5,6]]),nu.ccsSparse([[7,8],[9,10],[11,12]]))
[[          0,          2,          4],
 [          0,          1,          0,          1],
 [         58,        139,         64,        154]]

> M = [[0,1,3,6],[0,0,1,0,1,2],[3,-1,2,3,-2,4]]; b = [9,3,2]; x = nu.ccsTSolve(M,b)
[      3.167,          2,        0.5]

> nu.ccsDot(M,[[0,3],[0,1,2],x])
[[          0,          3],
 [          0,          1,          2],
 [          9,          3,          2]]

> LUP = nu.ccsLUP(A)
{L: 
[[          0,          5,          9,         12,         14,         15],
 [          0,          2,          4,          1,          3,          1,          3,          4,          2,          2,          4,          3,          3,          4,          4],
 [          1,     0.1429,     0.2857,     0.8571,     0.4286,          1,    -0.1282,    -0.5641,    -0.1026,          1,     0.8517,     0.7965,          1,      -0.67,          1]],
U: 
[[          0,          1,          3,          6,         10,         15],
 [          0,          0,          1,          0,          1,          2,          0,          1,          2,          3,          0,          1,          2,          3,          4],
 [          7,         10,     -5.571,          3,      2.429,      8.821,          5,     -3.286,      1.949,      5.884,          3,      5.429,      9.128,     0.1395,     -3.476]],
P: 
[          1,          2,          4,          0,          3],
Pinv: 
[          3,          0,          1,          4,          2]}

> nu.ccsFull(nu.ccsDot(LUP.L,LUP.U))
[[          7,         10,          3,          5,          3],
 [          6,          3,          5,          1,          8],
 [          1,          2,          9,          3,          9],
 [          3,          5,          8,         10,          8],
 [          2,          6,          7,          1,          2]]

> x = nu.ccsLUPSolve(LUP,[96,63,82,51,89])
[          3,          1,          4,          1,          5]

> X = nu.trunc(nu.ccsFull(nu.ccsLUPSolve(LUP,A)),1e-15)
[[          1,          0,          0,          0,          0],
 [          0,          1,          0,          0,          0],
 [          0,          0,          1,          0,          0],
 [          0,          0,          0,          1,          0],
 [          0,          0,          0,          0,          1]]

> nu.ccsLUP(A,0.4).P
[          0,          2,          1,          3,          4]

> A = nu.ccsSparse([[1,2,0],[0,3,0],[0,0,5]])
[[          0,          1,          3,          4],
 [          0,          0,          1,          2],
 [          1,          2,          3,          5]]

> B = nu.ccsSparse([[2,9,0],[0,4,0],[-2,0,0]])
[[          0,          2,          4,          4],
 [          0,          2,          0,          1],
 [          2,         -2,          9,          4]]

> nu.ccsadd(A,B)
[[          0,          2,          4,          5],
 [          0,          2,          0,          1,          2],
 [          3,         -2,         11,          7,          5]]

> X = [[0,0,1,1,2,2],[0,1,1,2,2,3],[1,2,3,4,5,6]]
[[          0,          0,          1,          1,          2,          2],
 [          0,          1,          1,          2,          2,          3],
 [          1,          2,          3,          4,          5,          6]]

> SX = nu.ccsScatter(X)
[[          0,          1,          3,          5,          6],
 [          0,          0,          1,          1,          2,          2],
 [          1,          2,          3,          4,          5,          6]]

> nu.ccsGather(SX)
[[          0,          0,          1,          1,          2,          2],
 [          0,          1,          1,          2,          2,          3],
 [          1,          2,          3,          4,          5,          6]]

> lu = nu.cLU([[0,0,1,1,1,2,2],[0,1,0,1,2,1,2],[2,-1,-1,2,-1,-1,2]])
{U: 
[[          0,          0,          1,          1,          2],
 [          0,          1,          1,          2,          2],
 [          2,         -1,        1.5,         -1,      1.333]],
L: 
[[          0,          1,          1,          2,          2],
 [          0,          0,          1,          1,          2],
 [          1,       -0.5,          1,    -0.6667,          1]]}

> nu.cLUsolve(lu,[5,-8,13])
[          3,          1,          7]

> g = nu.cgrid(5)
[[         -1,         -1,         -1,         -1,         -1],
 [         -1,          0,          1,          2,         -1],
 [         -1,          3,          4,          5,         -1],
 [         -1,          6,          7,          8,         -1],
 [         -1,         -1,         -1,         -1,         -1]]

> coordL = nu.cdelsq(g)
[[          0,          0,          0,          1,          1,          1,          1,          2,          2,          2,          3,          3,          3,          3,          4,          4,          4,          4,          4,          5,          5,          5,          5,          6,          6,          6,          7,          7,          7,          7,          8,          8,          8],
 [          1,          3,          0,          0,          2,          4,          1,          1,          5,          2,          0,          4,          6,          3,          1,          3,          5,          7,          4,          2,          4,          8,          5,          3,          7,          6,          4,          6,          8,          7,          5,          7,          8],
 [         -1,         -1,          4,         -1,         -1,         -1,          4,         -1,         -1,          4,         -1,         -1,         -1,          4,         -1,         -1,         -1,         -1,          4,         -1,         -1,         -1,          4,         -1,         -1,          4,         -1,         -1,         -1,          4,         -1,         -1,          4]]

> L = nu.sscatter(coordL)
[[          4,         -1,           ,         -1],
 [         -1,          4,         -1,           ,         -1],
 [           ,         -1,          4,           ,           ,         -1],
 [         -1,           ,           ,          4,         -1,           ,         -1],
 [           ,         -1,           ,         -1,          4,         -1,           ,         -1],
 [           ,           ,         -1,           ,         -1,          4,           ,           ,         -1],
 [           ,           ,           ,         -1,           ,           ,          4,         -1],
 [           ,           ,           ,           ,         -1,           ,         -1,          4,         -1],
 [           ,           ,           ,           ,           ,         -1,           ,         -1,          4]]

> lu = nu.cLU(coordL); x = nu.cLUsolve(lu,[1,1,1,1,1,1,1,1,1]);
[     0.6875,      0.875,     0.6875,      0.875,      1.125,      0.875,     0.6875,      0.875,     0.6875]

> nu.cdotMV(coordL,x)
[          1,          1,          1,          1,          1,          1,          1,          1,          1]

> G = nu.rep([5,5],0); for(i=0;i<5;i++) for(j=0;j<5;j++) if(g[i][j]>=0) G[i][j] = x[g[i][j]]; G
[[          0,          0,          0,          0,          0],
 [          0,     0.6875,      0.875,     0.6875,          0],
 [          0,      0.875,      1.125,      0.875,          0],
 [          0,     0.6875,      0.875,     0.6875,          0],
 [          0,          0,          0,          0,          0]]

> nu.imageURL(nu.mul([G,G,G],200))
""

> nu.cgrid(6,'L')
[[         -1,         -1,         -1,         -1,         -1,         -1],
 [         -1,          0,          1,         -1,         -1,         -1],
 [         -1,          2,          3,         -1,         -1,         -1],
 [         -1,          4,          5,          6,          7,         -1],
 [         -1,          8,          9,         10,         11,         -1],
 [         -1,         -1,         -1,         -1,         -1,         -1]]

> nu.cgrid(5,function(i,j) { return i!==2 || j!==2; })
[[         -1,         -1,         -1,         -1,         -1],
 [         -1,          0,          1,          2,         -1],
 [         -1,          3,         -1,          4,         -1],
 [         -1,          5,          6,          7,         -1],
 [         -1,         -1,         -1,         -1,         -1]]

> nu.spline([1,2,3,4,5],[1,2,1,3,2]).at(nu.linspace(1,5,10))
[          1,      1.731,      2.039,      1.604,      1.019,      1.294,      2.364,      3.085,       2.82,          2]

> nu.spline([1,2,3,4,5],[1,2,1,3,2],0,0).at(nu.linspace(1,5,10))
[          1,      1.435,       1.98,      1.669,      1.034,      1.316,      2.442,      3.017,      2.482,          2]

> nu.spline([1,2,3,4],[0.8415,0.04718,-0.8887,0.8415],'periodic').at(nu.linspace(1,4,10))
[     0.8415,     0.9024,     0.5788,    0.04718,    -0.5106,    -0.8919,    -0.8887,    -0.3918,     0.3131,     0.8415]

> nu.spline([1,2,3],[[0,1],[1,0],[0,1]]).at(1.78)
[     0.9327,    0.06728]

> xs = [0,1,2,3]; nu.spline(xs,nu.sin(xs)).diff().at(1.5)
    0.07302

> xs = nu.linspace(0,30,31); ys = nu.sin(xs); s = nu.spline(xs,ys).roots()
[          0,      3.142,      6.284,      9.425,      12.57,      15.71,      18.85,      21.99,      25.13,      28.27]

> z = (new nu.T([1,2,3,4,5],[6,7,8,9,10])).fft()
{x: 
[         15,     -5.941,     -3.312,     -1.688,      0.941],
y: 
[         40,      0.941,     -1.688,     -3.312,     -5.941]}

> z.ifft()
{x: 
[          1,          2,          3,          4,          5],
y: 
[          6,          7,          8,          9,         10]}

> nu.solveQP([[1,0,0],[0,1,0],[0,0,1]],[0,5,0],[[-4,2,0],[-3,1,-2],[0,0,1]],[-8,2,0])
{solution: 
[     0.4762,      1.048,      2.095],
value: 
[     -2.381],
unconstrained_solution: 
[          0,          5,          0],
iterations: 
[          3,          0],
iact: 
[          3,          2,          0],
message: 
""}

> sqr = function(x) { return x*x; }; nu.uncmin(function(x) { return sqr(10*(x[1]-x[0]*x[0])) + sqr(1-x[0]); },[-1.2,1]).solution
[          1,          1]

> f = function(x) { return sqr(-13+x[0]+((5-x[1])*x[1]-2)*x[1])+sqr(-29+x[0]+((x[1]+1)*x[1]-14)*x[1]); }; x0 = nu.uncmin(f,[0.5,-2]).solution
[      11.41,    -0.8968]

> f = function(x) { return sqr(1e4*x[0]*x[1]-1)+sqr(Math.exp(-x[0])+Math.exp(-x[1])-1.0001); }; x0 = nu.uncmin(f,[0,1]).solution
[   1.098e-5,      9.106]

> f = function(x) { return sqr(x[0]-1e6)+sqr(x[1]-2e-6)+sqr(x[0]*x[1]-2)}; x0 = nu.uncmin(f,[0,1]).solution
[        1e6,       2e-6]

> f = function(x) { return sqr(1.5-x[0]*(1-x[1]))+sqr(2.25-x[0]*(1-x[1]*x[1]))+sqr(2.625-x[0]*(1-x[1]*x[1]*x[1])); }; x0 = nu.uncmin(f,[1,1]).solution
[          3,        0.5]

> f = function(x) { var ret = 0,i; for(i=1;i<=10;i++) ret+=sqr(2+2*i-Math.exp(i*x[0])-Math.exp(i*x[1])); return ret; }; x0 = nu.uncmin(f,[0.3,0.4]).solution
[     0.2578,     0.2578]

> y = [0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,0.37,0.58,0.73,0.96,1.34,2.10,4.39]; f = function(x) { var ret = 0,i; for(i=1;i<=15;i++) ret+=sqr(y[i-1]-(x[0]+i/((16-i)*x[1]+Math.min(i,16-i)*x[2]))); return ret; }; x0 = nu.uncmin(f,[1,1,1]).solution
[    0.08241,      1.133,      2.344]

> y = [0.0009,0.0044,0.0175,0.0540,0.1295,0.2420,0.3521,0.3989,0.3521,0.2420,0.1295,0.0540,0.0175,0.0044,0.0009]; f = function(x) { var ret = 0,i; for(i=1;i<=15;i++) ret+=sqr(x[0]*Math.exp(-x[1]*sqr((8-i)/2-x[2])/2)-y[i-1]); return ret; }; x0 = nu.div(nu.round(nu.mul(nu.uncmin(f,[1,1,1]).solution,1000)),1000)
[      0.399,          1,          0]

> f = function(x) { return sqr(x[0]+10*x[1])+5*sqr(x[2]-x[3])+sqr(sqr(x[1]-2*x[2]))+10*sqr(x[0]-x[3]); }; x0 = nu.div(nu.round(nu.mul(nu.uncmin(f,[3,-1,0,1]).solution,1e5)),1e5)
[          0,          0,          0,          0]

> f = function(x) { return sqr(10*(x[1]-x[0]*x[0]))+sqr(1-x[0])+90*sqr(x[3]-x[2]*x[2])+sqr(1-x[2])+10*sqr(x[1]+x[3]-2)+0.1*sqr(x[1]-x[3]); }; x0 = nu.uncmin(f,[-3,-1,-3,-1]).solution
[          1,          1,          1,          1]

> y = [0.1957,0.1947,0.1735,0.1600,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246]; u = [4,2,1,0.5,0.25,0.167,0.125,0.1,0.0833,0.0714,0.0625]; f = function(x) { var ret=0, i; for(i=0;i<11;++i) ret += sqr(y[i]-x[0]*(u[i]*u[i]+u[i]*x[1])/(u[i]*u[i]+u[i]*x[2]+x[3])); return ret; }; x0 = nu.uncmin(f,[0.25,0.39,0.415,0.39]).solution
[     0.1928,     0.1913,     0.1231,     0.1361]

> y = [0.844,0.908,0.932,0.936,0.925,0.908,0.881,0.850,0.818,0.784,0.751,0.718,0.685,0.658,0.628,0.603,0.580,0.558,0.538,0.522,0.506,0.490,0.478,0.467,0.457,0.448,0.438,0.431,0.424,0.420,0.414,0.411,0.406]; f = function(x) { var ret=0, i; for(i=0;i<33;++i) ret += sqr(y[i]-(x[0]+x[1]*Math.exp(-10*i*x[3])+x[2]*Math.exp(-10*i*x[4]))); return ret; }; x0 = nu.uncmin(f,[0.5,1.5,-1,0.01,0.02]).solution
[     0.3754,      1.936,     -1.465,    0.01287,    0.02212]

> f = function(x) { var ret=0, i,ti,yi,exp=Math.exp; for(i=1;i<=13;++i) { ti = 0.1*i; yi = exp(-ti)-5*exp(-10*ti)+3*exp(-4*ti); ret += sqr(x[2]*exp(-ti*x[0])-x[3]*exp(-ti*x[1])+x[5]*exp(-ti*x[4])-yi); } return ret; }; x0 = nu.uncmin(f,[1,2,1,1,1,1],1e-14).solution; f(x0)<1e-20;
true

> z = []; cb = function(i,x,f,g,H) { z.push({i:i, x:x, f:f, g:g, H:H }); }; x0 = nu.uncmin(function(x) { return Math.cos(2*x[0]); },[1],1e-10,function(x) { return [-2*Math.sin(2*x[0])]; },100,cb)
{solution: 
[      1.571],
f: 
         -1,
gradient: 
[  2.242e-11],
invHessian: 
[[       0.25]],
iterations: 
          6,
message: 
"Newton step smaller than tol"}

> z
[{i: 
          0,
x: 
[          1],
f: 
    -0.4161,
g: 
[     -1.819],
H: 
[[          1]]},
 {i: 
          2,
x: 
[      1.909],
f: 
    -0.7795,
g: 
[      1.253],
H: 
[[      0.296]]},
 {i: 
          3,
x: 
[      1.538],
f: 
    -0.9979,
g: 
[    -0.1296],
H: 
[[     0.2683]]},
 {i: 
          4,
x: 
[      1.573],
f: 
         -1,
g: 
[   9.392e-3],
H: 
[[     0.2502]]},
 {i: 
          5,
x: 
[      1.571],
f: 
         -1,
g: 
[  -6.105e-6],
H: 
[[       0.25]]},
 {i: 
          6,
x: 
[      1.571],
f: 
         -1,
g: 
[  2.242e-11],
H: 
[[       0.25]]}]

> sol = nu.dopri(0,1,1,function(t,y) { return y; })
{x: 
[          0,        0.1,     0.1522,      0.361,     0.5792,     0.7843,     0.9813,          1],
y: 
[          1,      1.105,      1.164,      1.435,      1.785,      2.191,      2.668,      2.718],
f: 
[          1,      1.105,      1.164,      1.435,      1.785,      2.191,      2.668,      2.718],
ymid: 
[      1.051,      1.134,      1.293,        1.6,      1.977,      2.418,      2.693],
iterations: 
          8,
events: 
           ,
message: 
""}

> sol.at([0.3,0.7])
[       1.35,      2.014]

> nu.dopri(0,10,[3,0],function (x,y) { return [y[1],-y[0]]; }).at([0,0.5*Math.PI,Math.PI,1.5*Math.PI,2*Math.PI])
[[          3,          0],
 [  -9.534e-8,         -3],
 [         -3,   2.768e-7],
 [    3.63e-7,          3],
 [          3,  -3.065e-7]]

> nu.dopri(0,20,[2,0],function(t,y) { return [y[1], (1-y[0]*y[0])*y[1]-y[0]]; }).at([18,19,20])
[[     -1.208,     0.9916],
 [     0.4258,      2.535],
 [      2.008,   -0.04251]]

> sol = nu.dopri(0,2,1,function (x,y) { return y; },1e-8,100,function (x,y) { return y-1.3; })
{x: 
[          0,     0.0181,    0.09051,     0.1822,     0.2624],
y: 
[          1,      1.018,      1.095,        1.2,        1.3],
f: 
[          1,      1.018,      1.095,        1.2,        1.3],
ymid: 
[      1.009,      1.056,      1.146,      1.249],
iterations: 
          5,
events: 
true,
message: 
""}

> sol = nu.dopri(0,2,1,function(x,y) { return y; },undefined,50,function(x,y) { return [y-1.5,Math.sin(y-1.5)]; })
{x: 
[          0,        0.2,     0.4055],
y: 
[          1,      1.221,        1.5],
f: 
[          1,      1.221,        1.5],
ymid: 
[      1.105,      1.354],
iterations: 
          2,
events: 
[true,true],
message: 
""}

> nu.seedrandom.seedrandom(3); nu.seedrandom.random()
     0.7569

> nu.seedrandom.random()
     0.6139

> nu.seedrandom.seedrandom(3); nu.seedrandom.random()
     0.7569

Facebook

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License